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THE MAXIMAL VARIATION OF 
A B O U N D E D  MARTINGALE 

BY 

J E A N - F R A N C O I S  MERTENS  AND S H M U E L  Z A M I R  

ABSTRACT 

Let Xg = {X,}~ be a martingale such that 0 _-< X, _-< 1; i = 0 , '  -., n. For 0 = p _-< 1 
denote  by ~,~, the set of all such martingales satisfying also E(Xo)= p. The 
variation of a martingale X~ is denoted by V(X~) and defined by V(Xg)= 
E(ET=~ IX,.1- X, I). It is proved that 

lim{ Sup [-~ V(xg) ]} = ~b(P), 

where ~b(p) is the well known normal density evaluated at its p-quantile,  i.e. 

t h ( p ) = ~ J - - ~ e x p ( - ~ x ~ )  where ff:-~exp(-�89 

A sequence of martingales X~, n = 1 , 2 , . . .  is constructed so as to satisfy 
l i m . ~ ( 1 / X / n )  V(X~,) = 4~(P). 

I. Introduction 

For a martingale Xg={X,}~ we define the variation by V(X~')= 

E(E,%~ I X,+~- Xl I). We are interested in this variation for bounded martingales, 

say 0 ~ X, =< 1, i = 0, 1, 2, �9 �9 .. For any p: 0 =< p < 1 denote by J,/~, the set of all 

n-martingales bounded in [0, 1] and satisfying E(Xo)=p (E(X) denotes the 

expectation of X). 

A rather easy consequence of a well known property of martingales and the 

Cauchy-Schwartz inequality is that 

0.1)  v(x ) <= x/-p-d - p ) .  

for every X;'C ~ , .  In particular if {X,}o is an infinite martingale with E(Xo)= p 
and )t'~ is its truncation at stage n, then (1.1) holds for n = 1, 2, �9 �9 �9 However  this 
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is not the strongest statement possible in this case since from the convergence of 

{X,}~7 it can be shown that for any such a-martingale 

(1.2) [ i m - ~  V(X,';) = 0. 

The question we are interested in is: Is ~/n the least upper bound for the order of 

magnitude of V(X~)? Since obviously there are n-martingales with V(X~,) of 

lower order of magnitude, the question is: Is there a function/(p); jr(p) > 0 for 

0 < p < 1 ; such that for each 0 =< p <= 1 and a positive integer n there exists an 

n-martingale X~' E M~, satisfying 

(1.3) V(%~) >= f(p)~/n ? 

Notice that in view of (1.2) it is impossible to satisfy (1.3) with the X~ being the 

truncations of the same w-martingale. An affirmative answer to the above stated 

question would imply: There exists f(p): f(0)=jr(1) = 0 and f ( p ) > 0  for 

0 < p < l  such that 

(1.4) f(p)< Sup [@~V(x~ ) ]_-< V 'p (1 -p ) .  

It turns out that a result much stronger than (1.4) can be achieved, namely 

(1.5) ! im/Sup [ ! -V(xg) ]}=4~(p)  

where 

~b(p) = @--~ exp ( -  �89 ~,); f]] -~--~ exp(-�89 dx = p" 

Thus, not only is S u p ~  [(1/~/n)V(%~)] bounded away from 0 but it is a 
converging sequence, the limit of which is, amazingly enough, the well known 

normal density function evaluated at its p-quantile. 

A by-product of the proof of this result is a construction of a sequence of 

martingales X~E Mp; n = 1,2, . . .  for which 

Our interest in the variation of bounded martingales came up through game 

theory. It turns out that the speed of convergence of the values of certain 
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repeated games with incomplete information is given by (1/n)V(xg) for some 

X~, E dd~,. Using the results of this paper one can find a sequence of such games 

with asymptotic value 0, for which the values v,(p) satisfy l im,_ |  

~b(p). These are in some sense repeated games with the slowest rate possible for 

releasing information (see [3]). 

We are indebted to David Gilat for calling our attention to an inaccuracy in 

the first version of the paper. 

THEOREM 2.2 

(2.1) 

holds for all X?~ E dd~. 

2. Preliminary results and statement of the main theorem 

We are considering n-martingales and ~-martingales bounded in [0,1] with a 

given and fixed expectation p, i.e., {X,}~, and {X,}o such that 0=<X, =< 1 Vi and 

E(Xo) = p; 0 ~ p =< 1 (hence also E(X, )  = p Vi). We denote such n-martingales 

by X~ (or)(o) and the set of all such martingales by d~, (or dd~). 

DEFINITION 2.1 The n-stage variation of a martingale Xo (or Xg' for m => n) is 

denoted by V(Xg) and defined by 

/ V(.~)  = E E I X , + l - X , [  " 
i=0 

The following two Theorems may be partially or fully known. However, we 

state and prove them here for the sake of completeness and mainly to clarify the 

significance of our main result (Theorem 2.5). 

For all p, O <= p <= l and n = l, 2, . . , 

1 
k in  V(X~) <= V'p(1 - p) 

P~OOF. We recall that since martingale differences are uncorrelated (see e.g. 

[1]), it follows that 

(2.2) E (~o ' (X ,§  X,)2)= E ( X . -  Xo)2. 

Since in our case the martingale is bounded in [0, 1] and E(Xo) = p, it is easily 

seen that the maximal value for E ( X . -  Xo) 2 is attained when Xo =-p and the 

distribution of X. is Pr(X. = 1) = p; Pr(X. = 0) = 1 - p in which case we have 

E ( X ,  - Xo) 2 = E(X])  - p2 = p _ p2 = p(1 - p).  
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Hence, by (2.2) 

n-1 ) 
(2.3) E ~ (X,+l -x , ) :  - < p ( 1 - p ) .  

Now we make use of the Cauchy-Schwartz inequality and get (using (2.3)) 

V(X'd)=E(~oIX,§ I < E,,=o (X'+'-X')~ E,,=o 1~ 

Vp(1  - p ) .  N/n, 

which completes the proof. 

COROLLARY 2.3 For any infinite martingale Xo bounded in [0,1] with 
E(Xo) = p the n-stage variation is bounded by x/p(1 - p). ~/n and consequently 
0 _-< limn_~sup V(X~)/X/n<= X / - ~  - p). 

However,  as far as infinite martingales are concerned a stronger result can 

be obtained, namely 

THEOREM 2.4. Forany oo-martingalexo with 0 - < 2 ( , < 1 ;  i = 1 , 2 , . . . ,  

~ i m - ~  V (x ~) = O . 

Before proving this theorem let us notice that there is no hope to strengthen it 

so much as to prove that V(Xo ) < ~. In fact the following example communi- 

cated to us by David Gilat shows that a bounded martingale may have an infinite 

variation. 

EXAMPLE. Perform a symmetric random walk (p = �89 with X0 = �89 and a step 

size ~. Reduce the step size to 3~ as soon as you reach one of the points �89 +--~. In 

general if the step size was last time reduced at point y to size ek = 2 -~2k§ then 

reduce it to ek+~ = 2 -~2k§ as soon as you reach one of the points y --- nkek where 

nk = 2 k. Doing that for k = 1, 2,.  �9 �9 we obtain a martingale Xo bounded in [0, 1] 

(since E~=~ n~ek = �89 If we denote by Nk the number of steps of size ek made, 

then clearly 

V(xo) = ~ e~E(N~). 
k ~ l  

But E(N~) = n~ (expected duration of a classical ruin game, see e.g. [2] pp. 348), 

hence, 
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V(Xs)= ~ ekn~= ~ 2-'2k+')221' =oo. 
k=l k=l 

PROOF OF THEOREM 2.4. Let Xo = {X,}o be an ~-martingale bounded in [0, 1]. 
By (2.2), Xo is (uniformly) bounded in L2, hence Xo converges in L2 to a random 
variable say X~. So Ve >0,  3k s.t. IIx. - x~+~ ~ for all n. Now 

1 1 ~+.-1 
x / ; - T v ( x ~ * ~  ~ E(IX,+1-X,I )  

f ~ l  k+~t-1 
tz (j x,+, - x,  I )+  E ~( Ix ,+ , -x , I ) ] .  

Using the Cauchy-Schwartz inequality for each of the two sums and then 
applying (2.2) we get 

l V(x~+.)<_ V~ [~-' 21"2 
Vk +-------~ VG--4~ E ~(X,+l-x , )  ] 

I=O 

=< V_~nl l  x ~ V ;  _ Xoll= + ~ l l x ~ + .  - x~ I1=. 

Letting n - * ~  we conclude that Ve > 0  3k s.t 

1 
lim V(xo ~+") < ~, 

x/~---~n 

in other words 

~ - ~  V (x ~) = o 

as claimed. We now turn to the main result of the paper: 

THEOREM 2.5 (The Main Theorem). For any p; O<=p <= I: 

(2.4) !im / Sup [7~1/-V(xg)]}=ck(p), 
~ |  x~e .~ ,  L V n  J 

where ~b (p ) is the standard normal density [unction evaluated at its p-quantile ( i. e. 
d}(p) = (1 /V'~)exp ( - �89 2) where f~_"= ( 1 / V ' ~ ) e x p ( -  �89 2) dx = p). 
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In view of the length and the technical complication of the proof we provide in 

the next section the heuristic arguments that lead, and in fact have led us, to the 

result. The formal proof is given in section 4. 

3~ 

Let 

The heuristics of the result 

~b~(p) = Sup [ -~Z V(xg) ]. 

Assuming Xo = p, ,b~(P) clearly satisfies the following recursion formula: 

"k/n + l~bn§ = Max {E(]Xt-p[)+'X/nE(~b~(X,))} 
{X]IE(X1)=p} 

(3.1) = Max {P(X,>=p) 
{X~IE(XD=p} 

• [E(X , -  p IX, >-_ p)+ V'nE(6,, (X,)] X, > p)] 

+ P (X~ < p)[E(p - X1 IX1 < p) + ~/nE (~bn (X0 ] X~ < p)]}. 

Assuming that ~bn is concave (an assumption based on observation of ~bl and 4,2), 

then for any X,, the expression to be maximized in (3.1) is increased if X~ is 

replaced by .~  which assumes only the two values p + ~ and p -  77, where 

= E(X,  - p [X, _-> p) and r/ = E(p - X, IX1 < p). Since in addition E ( X 0  = p 

we replace (3.1) by 

(3.2) X/n+l~b .§  Max ~ V ' n [  ~/ ~b . (p+~)+  ~: ] 2+_~ } 

where S(p) = {(~:,r/)10= < ~:_-< l - p ;  0 =  < r / < p } .  

By concavity of ~b, the expression in the square brackets decreases both in 

and in 7/. Since this expression is multiplied by X/n, it follows that the points 

(~,, r/.) at which (3.2) achieves its maximum, satisfy (~,, r/.) , (0, 0). Expanding 

~b.(p + ~) and ~b,(p - 7/) we obtain the following approximation: 

(3.3) X/n+16.+l(p)~{X/n[6,(p)+~.~%cl,'(p)]+2~,Tq./(r 

For any fixed ~.7/, the expression at the right hand side of (3.3) is maximized 

when (~. + 7/.) is minimized, which is at ~. = 7/.. We conclude that as a first 

approximation, the maximum in (3.2) is achieved for ~ = ~7. Motivated by this 
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observation we restrict the domain of maximization S(p)  in (3.2) to S(p)  f3 {~: = 

77 } = {x I 0 =< x = p *}, where p * = min (iv, 1 - p). The recursion equation (3.2) is 

thus replaced by 

(3.4) W'n---+ l~ ,+ , (p )  = Max { � 8 9  
O~x ~p"  

Assuming now that ~bn (p) converge to some function 40 (p) one gets from (3.4), 

letting x = an/X/n ,  

variable z- 

~il 1 r a . ,  a.fN/-n)~) + ~-40(p)~-Max (V + ~[~>(p + o<,,tVn) § ~(p- 

-- Max/~ + 40(p)+ ~ ~"(p)} 
~. I . n  

~ + l M a x  a . +  ~" 1 
n <,. = ~ 2n~0"" 

On the other hand X / l +  1 /n~  ~ ~ + (1/2n)~, thus ~ = - 1/~". In other words 

we are led to the differential equation 

0 .5 )  ~ " +  1 --- 0. 

To solve (3.5) we rewrite it as - ~ ' ( p ) =  f~n(1/40)dp, where we have intro- 

duced an integration constant so as to have 40'(�89 0 which is implied by the 

symmetry of 40(p) around p =�89 Now let z ( p ) =  -,p'(e)=f?,2(1/40)dp, then 

z ' ( p )  = 1/~ and thus tp = dp /dz .  Now replace in (3.5) the variable p by the 

,dp  , 
~" = 40~'dz = ~P~ = - z~ ,  

which implies l n r  = K - ~ z  2 or 

1 
(3.6) 40 = A ~ - ~ e x p ( -  �89 2) 

(where K and A are constants). Since ~ --- d p / d z  we get 

(3.7) p = c + A e x p ( - ~ x 2 ) d x .  

Denoting by F ( x )  the cumulative standard normal distribution we have there- 

fore 
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(3.8) q~ (z) = A F ' ( z  (p)) ,  

(3.9) p = c + A F ( z ( p ) ) .  

Now q~ -> 0 and ~ 0  implies A > 0  from which it follows by (3.7) that z (p)  is 

monotonously increasing with p. Since ~ ( 0 ) =  ~p(1)= 0 we have by (3.6) that 

z(0) = - ~ ,  z (1 )=  + ~. From (3.7) we thus have 

(3.10) 1 = c + A. 

From ~0'(�89 0 we get z (�89 -q~'(�89 0, hence from (3.7) 

(3.11) -1 - !A  2--C+2 �9 

We conclude from (3.10) and (3.11) that c = 0 and A = 1, thus finally q~(p) = 

F ' ( z ) ,  p = F ( z  ), i.e. the limit ~o (p) is the standard normal density evaluated at its 

p-quantile. 

4. Proof  of the Main T h e o r e m  

First let us introduce the convention of writing p'  instead of 1 - p  for 

0 -< p = 1. (Although we will use the prime also for derivative it will be clear 

from the context which operation it stands for.) Next, for 0 < p < 1 let 

0 ~ p ' ~  
s (p) = n)  

and define two sequences of functions on [0, 1], {q~,} and {4,,} by ~o -= q,o =- 0 and 

for n = 0 , 1 , 2 , . . .  

V 'n+lq~.+l (p)  = Max [N/n ~l ~ 0 . ( p + ~ ) + ~ n ~ - ~  ~ O , ( p - ~ ) + , 2 . - - ~ ]  (4.1) 

(4.2) q',+l = Cav q~,+l. 

In (4.1) the expression in the square brackets is defined to be ~O.(p) when 

= ~ = 0. In (4.2) Cav is the operator of concavification of a function on [0, 1], 

(i.e. Cav f is the smallest concave function g satisfying g ( p )  > f(p) ;  0 _-< p < 1). 

We first observe that 

(4.3) ~0.(0)=~O,(0)=~p,(1)=~b,(1)=0 for n = 0 , 1 , 2 , . . . .  

It also follows immediately from the definitions that 

(4.4) q~,(p) = ~bl(p) = 2p(1 - p)  for 0 < p _-< 1. 

LEMMh 4.1. Every  ~ ,  a n d  every q,,, n = O, 1 ,2 , .  �9 �9 is s ymmetr i c  a round  p = �89 
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This is easily proved  by induction using (4.1) and observing that the opera t ion  

Cav conserves the symmet ry  a round  p = �89 

LEMMA 4.2. 

(4.5) Sup V(X~,) = ~bi(p) = 2p(1 - p ) .  

PROOF. For  any mart ingale X;; E M~, we deno te  by V(X~I X,, = a )  the condi- 

tional n-stage variat ion given the value a of Xo. We shall first show 

(4.6) Sup V(X~,[ 2(o = a )  = 2a(1  - a ) ,  
X] 

where  the Sup is being taken over  all r.v. ( random variables) in [0, 1] s.t. 

E ( X , )  = a. To prove  (4.6) take any such X, and let l),  = {X1 > a}, 112 = {X~ =< a}, 

then 

V(x ,l Xo = v . ( I x , -  1) 

= P ( I ~ , ) E ( ( X , -  a ) l  ~ , )  + P ( ~ 2 ) E ( ( a  - X,) I 1~2 ) 

= P ( fL ) "  ~: + (1 - P(O,))  �9 r I 

where  ~ = E ( ( X , -  a) ] f~ , )  and ~/ = E ( ( a  - X , ) IO~ ). Now 

a = E (X,) -- P ( f l , )E (X ,  I1~,) + (1 - P ( f l , ) ) E ( X ,  [f12) 

= P ( l ) , ) ( a  + ~ ) +  (1 - P ( ~ , ) ) ( a  - r l ) ,  

P(lq,)  = , / /(~ + 7/) and hence V(X~)I Xo = a )  = 2~7//(~ + ~/). 

(4.7) Sup V(X~IXo  = a ) =  Sup 2sc'r//(sc+ r/). 
(r 

In (4.7) the sup is achieved for ~ -- a '  = 1 - a and r/ = a, which establishes (4.6). 

Now if we deno te  by Exo the expecta t ion with respect  to the r.v. Xo we have 

Sup V(Xo')= Sup E ~ , [ S u p  V(X~, ,Xo)]  
~r {xaE(Xo)=p~ x~ 

= Sup E ( 2 X o ( 1 - X o ) ) .  
{XolE(Xo)= p} 

Finally since 2 X o ( 1 - X o )  is a concave function w.r.t. 2(0, the Sup~xolE(xo)=p~ is 

achieved for Xo = p which concludes the proof  of L e m m a  4.2. 

THEOREM 4.3. For n = O, 1, 2, �9 �9 �9 and 0 <= p <= 1 

which implies 

The re fo r e  
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(4.8) Sup [ 1/_V(2f~,)]____G(p). 

PROOF. By induction on n : For  n - 1, (4.8) follows from L e m m a  4.2. Assume 

(4.8) is t rue  for  n =< m - 1 and let us p rove  it for  n = rn. Since 0 -  = Cav ~,, it is 

clearly enough to p rove  that for  0 ~ p < 1 

(4.9) vii 1 Sup V(XR') <- ~ , . (p) .  

XO~p 

To  prove  (4.9) let fh  = {x, > p}, FI = P ( f h )  (hence 1 - II = P(lq2)). We  have for  

any {X, }~', X0 = p 

m - 1  

V(x;)  = Z ~ ( I x , - x , - , I )  
i = l  

m - 1  r a - 1  

= E ( [ X 0 - p  J ) + n  ~ ~ ( I x ,  -X ,_ lUa , )+  ( 1 - n )  ~ F ( I x ,  - x,_,Ua~) 
t = 2  z ~ 2  

(by induct ion hypothesis)  

<- E(I X ,  - p I) + V m  - 1 [rI r  I n , ) )  + (1 - I I ) # . _ , ( E ( X ,  [ fl2))l 

= rI(E(X, I n , ) -  P) + (1 - II)(p - E(X, I~2)) 

+ V m  - 1[nr dE(X,  In,)) + (I - I1)r I n2))]. 

Let  p + ~ : = E ( X ,  t f h )  and p - r / = E ( X ,  ff~z), then ~ 0 ,  7/=>0 and 

1-I• - (1 - II)'0 = 0 which implies 1-I = "q 1(~: + "I/). F rom our  last inequali ty we thus 

obtain 

V ( x 0 ) = x / ~ - ~ - I  n r  r +~+---~, 

and by definition of r  V(XY)<= ~/mr (p), which concludes the proof  of 

T h e o r e m  4.3. 

The  following two Lemmas  provide  bounds  for  the convexi ty  of the funct ion 

~b(p). 

LEMMA 4.4. There exists a constant c >0 such that 

1 Max [~---~(~b(p+x)+ck(p-x))+x]>=d~(p)-c/n 2 
(4.10) k / n  + 1 0~x_~m,,Cp.p'> 

for all O <= p <= 1; n = 1 , 2 , . . . .  
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LEMMA 4.5. There exists a constant  K > 0 s.t. for 0 < p < 1 

(4.11) 

IsraelJ. Math. 

Max X,/n r/ t k ( p + ~ ) + V ' n  ~: t h ( p - ' o ) +  2~r/ 

< 4)(p)+ K / n  2. 

Unfortunately the proofs of these technical Lemmas about ~b(p) are rather 

lengthy. They can be found in the Appendix. Proceeding in the proof of our 

main theorem we define now a new sequence {4;,}0 of functions on [0, 1] by 

q~o --- 0 and 

(4.12) X/n+  1 ~.+,(p) = ~e.,)~stp,Max t[ V'n ~-=--~-~ ~" (P + r  -1- r/ sr X / n ~ - - ~  t~"(P - ~) + ~2+-~ 

(Here again the expression in the brackets is defined to be ~ . (p)  if ~ = ~ = 0.) 

PROPosrrtoN 4.6. 

(4.13) O/.(p)>=~b.(p) for 0 _--< p _<-- l; n = 0 , 1 , 2 , . . . .  

This follows readily from the definitions (4.1) (4.2) and (4.12). 

LEMMA 4.7. For n = l ,2 ,  " " and  O <= p <-_ l 

~e.a.~ L v n  

PROOF. For each n = 1 ,2 , . . .  let us construct for each p, O < p  <-_1 a 

martingale Xg(p)E ~ ;  with variation exactly t~,(p), i.e. 

1 
(4.15) V ' n  vOfg(P))  = ~" (p)" 

We do the construction inductively on n: For n = 1 let X o ( p ) - - p  and 

Pr{Xl(p) = 0} = p'; Pr{X,(p) = 1} = p then V(X~(p))  = 2 p p ' =  ~ ( p ) .  

Assume now that for n and for each p, 0 =< p _-< 1 there is a martingale {X~(p)}g 

satisfying (4.15). Let (~,, 7-) be the point at which the maximum in (4.12) is 
attained. Define the martingale {Z,(p)}U ~ by 

Z o ( p ) - p ;  Pr{Z,(p) = p + ~.} = ~/,/(~, + ~/.); 

Pr{Zt(p) = p - "q,} = ~./(~:. + r/,), 
(4.16) 

{Z,(p)l  z l ( p )  = p + ~.}~ = {X,(p + ~.)}~', 

{Z,(p) I Z , ( p )  = p - 7/.}~ = {X, (p - T/.)}~'. 
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It follows by (4.12) and (4.16) that 

1 1 [ 2~.7/. 
N/- '~-I  V(Z~+I(P )) = V/- '~- I  L r + n. 

+ T/. 
~.+n. 

_______~1 [ 2~o~. + ,7. x/~6~(e+r 

V(x;(p + ~.)) 

r v ( x ~ ( p  - ,7~))] 

r Vn6~{p- n~) ] 
&+'O,  

= &+,(e). 
This completes the proof of Lemma 4.7. 

LEMMA 4.8. For O<=p<=l; n = l , 2 , - . .  

ot 
(4.17) {k~ (p) => {b(p) - X/n' 

for some constant a > O. 

PROOF. 

(4.18) 

We first prove by induction on k that for any n => 1 

1 [X/n ~ 4 c 1  
&*~( P ) ~  '~(P) X/~;--~ ~ , . ,  LT-  + 2' ], 

+ V~2---k ~ - - ~  &§ (p - r/) + ~---~ ] 2 ~ /  

> 1 Max fk/- f f -+k(6,+~(p+x)+~bn§ 
= X/n + k + 10-:x-:p^p, t 2  J 

1 Max t ,, {X/.~ +.__..~k r|{k(p +x)+ c ~ ( p - x ) + x  
= V'n + k + 1 o-~x-~p ̂p, L Z L 

4c 

,.. 

1 [ 
Max V'nT'-k ~ 8,*~ (P + ~:) + 

{~+k+l(p) = X/n + k + 1 (~.~)~s{p) t r + r/ 

for k = 0 , 1 , 2 , . . .  where c is a constant satisfying (4.10). In fact for k =0 ,  

qS~(P)=>0- -> {k(P)-�89 We notice that in (4.10) we may replace the last term 
- c/n 2 by - 4c/(n + 1) 2. Assume now that (4.18) holds for k, then by (4.10) 



264 J.-F. M E R T E N S  A N D  S. Z A M I R  Israel J. Math. 

4c 1 ( _ ~ + " 2 k  4~ / / )  
_->~b(p) ( n + k + l )  2 ~ / n + k + l  ,=, 

1 ( _ ~  + n~+~ 4~/) . 
= 6 ( P )  ~ / n + k  +1 ,=, 

Now by (4.18) for n = 1 

V '~-- l l  (~ ~1 4 ~ / )  a 
~bk+~(p)>-~b(p) + = = ~b(P)- X/k + 1 ' 

Since this holds for k = 0, 1 , - - . ,  the proof of the Lemma is completed. 

LEMMA 4.9. For O<=p<=l a n d n = l , 2 , . . .  

(4.18) 0 , (P)  --< 4'(P) + / 3 / \ / n  

for some constant/3 > O. 

PROOF. The proof is almost the same as that of Lemma 4.8. First tO~(p)= 
2pp'<= ck(p)+ �89 Next we use Lemma 4.5 and (4.1) to prove that 

1 1 K 
i = i  

(4.19) 

implies 

(4.20) -< + 

i = 1  

K is a constant satisfying (4.11). 
Since the function on the right hand side of (4.20) is concave, (4.20) implies 

1 (1 K )  
(4.21) Ok+=(p)=Cavq~k+=(p)<=4a(p)+~ 2 + k22-~i  i . 

t = l  

Hence we have proved (4.19) by induction for k = 0, 1 - - - .  Finally it follows 
from (4.19) that 

0k+,=<~b(p)+ fl . k = 0 , 1 , . . .  

holds for some constant /3. This completes the proof of the Lemma.  
We are now in the position to conclude the proof of our main Theorem: 
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PROOF OF THEOREM 2.5. By Lemmas 4.7 and 4.8 

and by Theorem 4.3 and Lemma 4.9 

lim Sup { Sup [ @-n V (X g) ] } <-- lim Sup O. (P ) <= rb (P ) . 

COROLLARY 4.10. The n-martingales X ~(P ) constructed in the proof of Lemma 
4.7 satisfy 

Iim [--~ V(x~(P)) ] = 0 ~ P  --<1, 

with the speed of convergence of the order of 1/~/n. 

In fact by construction 

1 x/nV(X~(p))=(b,(p); 0-<p_-<l; n = l , 2 , . . .  

while by Lemmas 4.8, 4.9, and Proposition 4.6 

(4.22) 6(p)- +.(p)-<_ 6(p)+ t3/x/  

APPENDIX 

Proofs of Lemmas 4.4 and 4.5 

We intend to prove in this Appendix two technical statements (namely, 

Lemmas 4.4 and 4.5) about the function ~b(p) defined on 0_< p _--- 1 by 

-~xp) where f ~  - ~ e x p ( - � 8 9  p. (A.1) 6 ( P ) =  exp( ' 2 = 

We start by examining the derivatives of 4~(P): 

PROPOSITION A.1. For 0 <= p <= 1 and 4~(P) and xp defined by (A.1) 

(a) 6 ' ( P ) =  -xp,  

(b) x ; :  1/4)(p), 
(c) qS"(p) = - 1/&(p) = - x~,, 

(d) ~b'3'(p) = - xp/4a2(p), 
(e) ~b(4)(p) = - (1 + 2x~)/ck~(p), 
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(f) ~b'5'(p) = - xp(7 + 6x~)/ch'(p), 
(g) ,;b'6'(p) = - (4x2,+ 7)(6x~+ 1)/~b-'(p), 

(h) ~b'2"'(p)_-<0; n = l , 2 , . . . .  

PROOF. (a) tO (g) result f rom straightforward differentiation. (h) will follow if 

we prove that 
- -  1 n - I  

(A.2) th'z"'(p) - ckz=i-(p),~=o a,x~' 

where  a, >= O for j = l, . . ., n - 1 .  

We prove (A.2) by induction on n. By (c) it is true for n = 1. Assume it for n, 

then 

- 1  f , -2  ] 
th'2"+~)(p) - ~b~(~) [ j~0 [(2n - 1)a, + 2(j + 1)a,+,]x~'+' + (2n - 1)a, ,x~"-' ] 

where  /% =>0; j = 0, .  �9 n - 1. Consequent ly  

,Zo + Z (2j + 
,;b<2"+2)(p)- , b 2 ~ ( p )  2n 2,+2 1)/3,x~' 

1 = 0  

n + l  _ 
6~~ 

where  3', --> 0; j = 0, �9 �9 n + 1. This concludes the proof  of the proposit ion.  

PROPOSITION A.2. I f  for n = 1 , 2 , . . .  we define p, by 

(A.3) e x p ( - � 8 9  1/n and p. <-�89 

then there exists no s.t. for any n >-_ no 

(A.4) p. <= p <= p', ~ ~(p)/V/n<= min(p ,p ' ) .  

PROOF. First, by our  definition of x,;  p = (1 /~ /~) f~_%exp( - �89  2) we have 

p. -< p _- p" ~ x ~ _  -< x~. ~ exp(  - �89 => e x p ( -  �89 

hence p, _-< p _-< p" ~ e x p ( -  �89 >_ 1/n may now be written as 

1 1 
e x p ( -  �89 _-> In ~ ~ n V ' ~  exp(  - �89 

( 1__~( ~. exp(_ �89  1 �89 ] _-< min \ X / ~ L ~  ~ - - ~ f |  e x p ( -  / . 
xp 
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The statement of the right hand side is 

1 1 __!_ l  ( -'x; 
(A.5) ~ X/)--~exp ( -  �89 _-< X/~j_ |  e x p ( -  �89 2) dx. 

We may therefore consider just, say, xp _-< 0 and prove (replacing xp by y) 

f, I 1 , 2 ~ exp(_�89 (A.6) ~ n  X/-~-~exp ( - ~y ) _-< 

whenever e x p ( - ~ y 2 ) _  -< 1/n and y _-<0. 

Now (A.6) is true (for all n _--> 1) whenever - 1 _-< y _-< 0. This is because it is 

true for y = - 1  (direct computation), and the left hand side is concave on 

- 1 _-< y =< 0 and has a smaller slope than the right hand side which is convex on 

- 1 _<- y _-<0 (see Fig. 1). For y < - 1; d/dy [ e x p ( -  �89 is positive and increas- 

ing hence at any point y < - 1, the part of the tangent left to y lies below the line 

exp(-�89 It intersects the coordinates axis at y + 1/y (Fig. 2). The integral on 

the right hand side of (A.6) can then be bounded by 

f'_~ exp(-�89 dx >= -~yeXp( - �89  

It suffices therefore to prove that 

exp(-~y~)_- > 1/n :ff - 1/2y _-> 1/~/n. 

In fact 

ex " , 2,= = = p L - ~ y ) > l / n  f f  l Y I = - Y  < ~ / 2 1 o g n f f  - 1 / 2 y  > l / 2 k / 2 1 o g n  

and since (log n)/n --~0 let no be s.t. n >= no ~ - 1/2y >= 1/X/n and we have thus 

proved (A.4) for n >= no. 

I I 
i I 
I I 
t 1 

-1 '  pl 
Fig. 1. 

Y 
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_ L  X 2 
2 

/ / / ! / 1  1 
I y Y + g  

Fig. 2. 

PROOF OF LEMMA 4.4. Using Proposition A.1 we expand the first term in the 

left hand side of (4.10) as follows: 

X 2 4 

-~(6 (p + x)+ 4~(p - x))= 4,(p)+ T ~"(p)+ ~ "  ~(r + 8)+ ~ ( p  - 6)) 

(A.7) = & ( P )  x 2 x a l/a+2x~+~/_~,~,l+2x~-n) 
2~b(p) 4! ~ \ , ~ 3 t p + 6 j + O 3 t p - 6 l  

where0=~-<_x .  

Clearly it is enough to prove (4.10) for n _-> no for fixed no and then modify the 

constant c to make (4.10) true for all n. 

Define p. by exp(--Jx  2 x - 2  p . j -  1/n and p. =<�89 then by Proposition A.2, x = 

ck(p)/~/n is in the domain of maximization in (4.10) for n >-_ no, hence denoting 

lhe left hand side of (4.10) by A, we get by using (A.7) for x = ck(p)/~/n 

> 1 f4~(p)+ X/;[ ~(p) (/)2(p) ]__ ( 1-'~- 2X2+~ 1+ 2X~-8 ~'(p)} 

~b(p) [ [ ~/n + 1/2 ~ / ; -  ~/n + 1 ] A 4(p) -> 
x / g + l  ] 

, /  l+2x~,+. 1 + 2x~,_. ~ •4(p) 

-~\q53(p + 8) + ~b3(p- 8 ) / 4 ! n 2 ~ n  + 1 

Since the first term on the right hand side is positive, the second is negative and 
X/n+l_-> l  we get 
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(A.8) 
l{ 1+2x~+8 1 + 2x ~-. '] ,;b'(,p2) 

a - 4~(p)_- > -~. \ 4 3 ( p  + 6 ) +  4 p ( p _  6 ) / 4 ! n  

where  0 <= 6 <= 4a(p)l',/n. 
Notice now that 4,~*(p) = - (1 + 2x~)/ek3(p) is a negat ive and concave  function 

(since ~b{~'(p) _-< 0). Also since ~b (p) is symmetr ic  a round p = I(4~(P) = 4~(P')) and 
. < !  since xp. = -xp ,  ,;b ~4~ is also symmetr ic  a round p --I.  It follows that for  p =2  

and by (A.8) 

which is 

I(6 '4 ' ( ,0  -- ~)  + O(4)(p + ~) )  ~ ~'~(p -- (~), 

1 + 2Xe-. (/)4(/~1) 
A - & ( p ) > =  - c k 3 ( p _ 6 ) "  4 !n  2 

(A.9) A - 4 ~ ( p ) = > - ( l + 2 x ~ - ~ )  '1 exp(~x:~-~-X/2~r 2x2~ ~ 1 !n 2 
m 

Now 1 + 2x 2 -  8exp(x2/4)  for  - ~c< x < ~ hence 

8 exp(3,Xp 8 -  2x2). (A.10) A - 4a(p ) >= ,/9-_~4 ! n2 

We now establish the existence of a constant  /~ such that xp - xp_~ _-</~/X/n 

holds for  p, <= p <= p'n, p <= �89 and n sufficiently large. Since 0 <= 6 <= 4J(p)/X/n and 

since x p - x p  a is monotonical ly  increasing with 6 we have to show that 

A _<_/~/X/n where  A = xp - x~_,~pv, -- Let t ing y = x~ = 0 we claim in o ther  words 

that da(p)/X/n = f~ ~ ( 1 / X / ~ ) e x p (  - �89 2) dx implies A __</(/~/n. 

In fact for - l = < y = < 0  we have 

fyY 1 1 1/X/2~n>-_ &(p)/X/n = ~ x / ~ e x p (  - ~x 2) dx >= X/2~re • , 

which implies A __< X/e/X/n. 

For  y _-< - 1 the tangent  to ( 1 / X / ~ ) e x p ( -  Ix 2) at x = y lies below the function 

and intersects the x axis at y + 1/y (see Fig. 3) forming a t r iangular  area 

( -  1 / 2 y ) ( 1 / X / ~ ) e x p ( -  ly 2) = 4~(p)/21 y I. 

Now p>--pro implies ly l=lxpI<-[xp,  l=x/21ogn<-_lX/n for  n sufficiently 

large, hence the tr iangular  area is _-> r  which implies z~ <~ 1/I y I. The  area 

of the shaded t rapezoid  is 4' (P) (2 - I Y I A)M 2, there fore  

X/n X / ~  e x p ( - I x 2 ) d x  >-- & ( P ) ( 2 - 1 y l A )  >-- ~b(P)'A--" 
2 
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' IY  
r- A - - - -~  

Fig. 3. 

This completes the proof of A =</(/~/n for a suitable constant / (  and n 

sufficiently large. From here we get 

( x~ ~ = ( x p - A )  2< x p -  = x  2 2fffxe+ , 

and 

(A. 12) ~xp7 2 , _ 2x ~ = - �88 ~ - 7I(xp/2 X/n + 7I(2/4n. 

Since xp < 0, the right hand side has a maximum (with respect to n) at no, hence 

(A.13) 7 2 2< , 2 7 ~ x J Z X / ~ o + 7 I ~ 2 / 4 n , < = K  ~Xt,-8-- 2 X p =  -- ~X v -  

where K is the maximum of the parabola (in xp) at the right hand side. 

Combining (A.13) and (A.10) we finally obtain the existence of a constant C, > 0 

s . t .  

(A.14) A ~ d a ( p ) - C 1 / 2  for n>=no and p.<-p<=p' , .  

It remains to establish (A.14) also for p - p, or p _-> p',. In this case, by the 

definition of p, : e x p ( -  �89 <= 1/n and therefore ~ (p )  =< 1/n X / ~ .  So (choosing 

x = 0) 

1 V n  
- -  Max [X/n�89 (,b(p + x ) +  O(p - x ) )+  x] _-> 
V n  + 1 ,,~x~p Vh--~ 4'(p) 

O<--x<=p ' 

-> 4 ' ( P ) -  4~(p)(1 - ~ / n / ~ n  + 1)_-> 6 ( P ) -  6 ( p ) / ( 2 n  + 1) 

>-- o k ( p ) -  1 /n(2n  + 1)x/~_-> ~ ( p ) -  C2/n 2 

for some constant C2. 
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Choose now C3 s.t. A >-49(P)-Cd n~ for 1 < n-<_ no and finally choose 

c = ma x(C ,  C2, C3). This completes the proof of Lemma 4.4. 

PROOF OF LEMMA 4.5. We have to prove the existence of a constant K > 0 s.t. 

for 0_--<p =< 1 

Max X/n r/ q~(p+~:)+X/n 
(A.15) k /n  + 1 (e,,)~s(p) ~: + r/ ~ + r/ 

where S(p)= {(s c, 7/)t0 -< ~: ~ p';  O~ "q _-<p}. 

+ 2~'0 ] 
4~(P-n)  ~ + n  j 

<- 4,(p)+ K/n ~ 

Since ~b is continuous and S(p) is compact, the maximum in (A.15) is 

achieved, say, at (~:o, r/o). From (dd,/dp),- = - oo; (dcMdp)o+ = + oo it follows that 

sG ~ P' and r/o ~ p. Furthermore we claim that if pp' ~ 0 then sG ~ 0 and r/o / 0. 

In fact, denote the function to be maximized in (A.15) by F(~:,r/), then 

F(0, r/) = F(~,0) = X/n,;b (p) while 

Max F(~,r/)==_ Max F ( x , x ) = X / n 6 ( p ) +  Max [O(x~)+x])>~/n4~(p). 
(~,v/,~E S(p ) O~;<~--pAp ' O ~ _ X N p ^ p '  

We conclude that (sG, r/o) is a local maximum of F(s c, r/) in S(p). Equating first 

partial derivatives to 0 yields 

(A.16) 

r/o T]o 

r/,, 2r/~, 
(~,, + yo)~ x / ~  4, (p - ,7o) + (~o + no)~ = o,  

(A.17) 

r/ , ,)_~Vn6(p + ~) (~o+ r/o) 2 V n ' t ' ( p  - r/) (~,,+ 

2 ~  
~~ V n , t , ' ( p  - r/o) + - -  = 0 

~,,+ ,7o f r o +  r/o)2 . 

Dividing (A.16) by r/o/(~o + r/o), (A.17) by ~o/(~:o + r/o) and adding the results we 

get X/n[,;b'(p + ~co)- ~b'(p - r/o)] + 2 = 0. 

Recalling that d / ( p ) =  -Xp we have 

(A.18) x~ .~-  x~ ,~, = 2/X/n. 

By the mean value theorem 

xp+~-  xp_~ = [(p + ~o ) -  (p - .o)]X io(~+~o)+(,-o,(~-~o,, 

for some 0 ~ 0 ~ 1 .  
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Using (A.18) and recalling that x ' ( p ) =  1/~b(p) we get 

(A.19) ~,,+ "0o = (2/X/n)6[O(p + Co)+ (1 - O)(p - 7o)1. 

Now 

6 [ O ( p  + ~,,) + (1 - O)(p - r/o)] = exp{ - h'rx 2,,- x~+o,,,-.-O,.o]} 
6(P)  

(A.20) 

Since xp 

= e x p { -  �89 + Xp+o~o o o,~o][xp - xp+oeo-.-o,~ol}. 

is monotonically increasing in p we get from (A.20) 

[xp + xp+o~,-,-o,,~,] [Xp - X p+o,o-o o,,,,,1--< (2/X/n)(2Ix p I+ 2/X/n) 

Denote 

Expanding &(p + s c) and ~b(p - 7)  yields the following expansion for G(s c, 7): 

G(~C, 7)  = ~h(p) + ,  ,, , _ 5sCr/'; b ( P ) + ~ 7 ( ~  7 ) 6 ' " ( p ) + '  2_ 
(A.22) 

' [-~-r L~6'5'(p - o'~-71] + r~ [ ~ + 7 6~"(P + o ' d ) -  ~:7 

where 0=<o-~N1 and 0=<o'2-<1. 

First consider the last term in (A.22) which we denote by K(p;  ~, 7). Since ~(:0 

is decreasing we have by Proposition A.1 

(A.23) K(p;sC, r / )=  < - ~ 7 ( ~ 2 + T 2 ) ( ~ - 7 ) X p ( 7 + 6 x 2 e ) / ~ b a ( p  ). 

By (A.21), since max (~r/, so2+ 7 2) ---(~ + 7)  2 and ~ : - 7  =< s c + 7 we have 

2 2 ]5 
I g ( p ;  ~o, rlo)l =< ~ [ ~ n 4 f f p ) e x p ( 2 [  xp I/X/n) + ~=nn xp (7 + 6x~)/494(p) 

(A.24) - _ _  
4 

15 X/~-714~ (p )x,, (7 + 6x~)exp(101 x,, I/X/n)+ 10IX/;] 

4 
[Xp (7 + 6x ~) exp (lOIx p J/x/n + lO /x /n -  �89 ~)]. 

X/2--~ 15 

and by (A.19) and (A.20) therefore 

(a.21) ~:,, + rio <= (2/x/n) 4)(p)exp(21xp I/x/n)" exp(2/n). 
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The last expression is clearly a bounded function of xp, hence 

(A.25) I K(P;  s Co, "0o)1 ~ Kt/n 2, 

for some constant K1. 
By (A.22) and (A.25), using Proposition A.1 we obtain 

G(~o, "00) =< ,;b (p) - ~o"0o/2~b (p) - -~o"0o(~o - 7o)xp/ck~(p) - 

- ~ ~o'0o(~ - ~o"0o + "0~o)(1 + 2x2p)/63(p) + K,/nL 
(A.26) 

Therefore 

(A.27) Max [ G ( ~ , ' 0 ) +  1 2{:'q ]<=~b(p)+K#n2+ Max D(~,"0) 

where 

1 2~?q _ ~q _ 1  x e 1 _~"0+"02) 
D ( ~ ' ' 0 ) =  ~ / n ~ + ' 0  2~b(p) 6 se'0(sr 7 )cb2(p) -  24~7({:2 l+2xe~b3(p) 

Observe that D(0,  "0) = D(~,0) = 0; D(s, e ) > 0  for s > 0  sufficiently small. Also 
D(,~,"0)--*-~ as ~:---~ or "0--->~. It follows that D restricted to the non- 
negative orthant  has a global maximum which is also a local maximum. Equating 

first derivatives of D(~, 7)  to 0 gives 

OD 1 2r/2 '0 (A.29) 0 -  - 
@ ~/n(~ +"0)2 2~b(p) 

OD 1 2s c2 ~? 
(A.30) 0 = "  - 

07 X/n(r  2d,(p) 

Adding 

we get 

~ ["0 (r - "0) + ~n] 6 ; )  

1 + 2x~ 
- - -~  ( 3 ~  2 - 2 ~ 7  + 72) 

4r ' Lq. 

X/, 
- -  + ~[~('0 - O +  ~'0] t,2(p ) 

~4 (3'0 2-  2~7 + r 
1 + 2x e 
,b3(p) �9 

1 0 D  1 0 D  

,1 a~ ~ o'0 

1 
(A.31) 2/~/n(s c + ' 0 ) -  l i d ( p ) -  �89 - "0)xflck2(p)--~(~ 2-  ~7 + "02) 

x (1 + 2x~)/~b~(p) = O. 
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Subtracting 

we get 

10D 10D 

n on 

1 1 
(A.32) 2(n - sc)/V~n(~ r + n)  2 -  ~(s c + n)x f lda~(p) -  _f~(~2_ n2)(1 + 2x~)/cb3(p) = O. 

By dividing (A.32) by (s r2 -  n ~) and eliminating (n - s r) we obtain 

(A.33) 71 - ~ = 12 
4- (�89 + X2)/63(p)  

+ ,7 )3 

Replacing in (A.31) (~2_ ,fn + n 2) by �88 + rt)~ + ~(,f - 7t) 2, and (~ - rt) by its 
value according to (A.33), we get 

2 ~ + x ~/~b4(p) 

X/n(~ + n)  d~(p) 24/~/n(~ + n)3+ (1 + 2x~)/,b~(p) 

(A.34) 
1 1 + 2x2e xe/cb2(p) = O. 
8 ,b3(p) 12/k/n(~ r + n)3+ (~+ x~)/da3(p) 

1 1+2x  e 
24 ~b~(p) (~r + n)~ 

It is easily verified that the expression in (A.34) tends to + oo as (~r + r/)---~ 0. On 

the other hand, the last two terms are always negative and the third is bounded 

from above by [1/,l,(p)]{Maxx[x/(l+2x2)]} which is 1/2 X/2~b (p ). So if we 
denote the left hand side of (A.34) by L(s c, n)  we can assert that 

(A.35) L (s c, n ) -< 2/~/(s c + n ) - l/oh (p) + 1/2 k/2~b (p). 

The right hand side of (A.35) is non-negative if and only if 

+ n <-- o~cb(p)/X/n where a = 2 / (1-  1/2X/2) - 3.1. 

It follows therefore from (A.35) and (A.34) that any solution (~:, n)  of (A.31) and 

(A.33) must satisfy 

(A.36) ~c + n =< a~b (p)/~/n. 

By (A.33) we get that at the maximum (~:, n )  

(A.37) 

Ix, I/4,2q0) 
)n - E I <-- 12nl~b 3(p)o~3 + (�89 + x~)lcb 3(p) 

Ix,[4,(t,)  I xp 3 
= 12n/a3+( �89 < 12n 
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Being interested in obtaining an upper bound for the global maximum of D we 
replace its last two terms by an upper bound at the maximum. The resulting 

function will have a maximum which is greater than or equal to that of D. Now 
the last term of D (in (A.28)) is not positive and as for the third term, by (A.36) 
and (A.37), 

x~ < ! ~ 'f 2(P ) [ x, 14,(p),~ ~ 
sr~7 (~ - n) 62(p) = 6 a n 12n62(p) 

c~ ~ 1 Max 1 - Ix l exp( - �89 ~) <-_ K~/n2. 

We conclude that 

(A.38) Max D(~, 7)  <- K d  n2 + Max D,(~, n) 

where K2 is a constant and 

2 ~ 7 .  1 ~/ (A.39) DI(~:, "0 ) = 
s c + n  X/n 2O(p) '  

Equating ODda~ and OD,/On to 0 we get 

1 ODl = 2r 1 1 1 
= O, 

n of ( ~ + n )  2 X/n 249 

1 a D l _  2~ 1 1 
= 0  

an ( ~ + n )  2 ~/n 2~b 

which imply ~ = n = 4'/~/n and hence 

(A.40) Max D,(,~, n)--< 4,(p)/n - 49(p)/2n = &(p)/2n. 
(~,n)~s(p) 

By (A.27), (A.38) and (A.40) 

(A.41) Max [ G ( ~ , n ) +  1 2~:, l < = 4 ) ( p ) ( l + l / 2 n ) + ( K , + K z ) ] n 2 .  
. . .~.s(.~ L ' , /n  ~ + '7 

Coming back to (A.15) we have now by (A.41) 

Max X/n r  sr q ~ ( p - n ) +  2 ~  ] 

(A.42) 

_ X/n Max [G(~,n)-~ 1 �9 2srn ]_-<4,(p)( l+ ~1 ) X/~@+l~ 
X/n + 1 (~,,~s(p~ ~/n {: + rt 2n 

K1 + K2 
712 
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Now notice that "X/1 + 1/n>= 1 + 1 /2n  - 1 /8n  2, therefore 

/ 1 +  --~-1 ~-----~ 1=  1 + 1/2_______nn 1 /8n  2 
1 /n  1 < .... < K d n  2 \ VI I + l12n - I/8n ~- 2n I + 

w h e r e  K3 is a constant. It follows that 

(A.43) cb(p) 1 +~nn X/n/X/n + 1 + K1/n2N 4~(p)+ rb(p)gdn2 + K,/n 2 

<= ~ ( p ) +  K / n  2 

where K is a constant. (A.42) and (A.43) conclude the proof of Lemma 4.5, 
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